Guess a word in a gap in historic texts
Give a probability distribution for a word in a gap in a corpus of Polish historic texts spanning 1814-2013. This is a challenge for (temporal) language models. [ver. 1.0.0]
This is a long list of all submissions, if you want to see only the best, click leaderboard.
# | submitter | when | ver. | description | dev-0 LogLossHashed | dev-1 LogLossHashed | test-A LogLossHashed | |
---|---|---|---|---|---|---|---|---|
59 | [anonymized] | 2021-02-08 06:15 | 1.0.0 | solution self-made lm | 6.1745 | 6.1841 | 6.0733 | |
151 | [anonymized] | 2021-02-04 20:29 | 1.0.0 | ngram lm pytorch-nn | 6.9101 | N/A | 6.9123 | |
83 | [anonymized] | 2021-02-03 07:57 | 1.0.0 | updated bigram self-made lm bigram | 6.2850 | 6.3862 | 6.2673 | |
95 | [anonymized] | 2021-01-27 10:23 | 1.0.0 | TAU22 lm pytorch-nn | 6.4696 | 6.4803 | 6.4151 | |
94 | [anonymized] | 2021-01-25 00:41 | 1.0.0 | TAU22 lm pytorch-nn | 6.4696 | 6.4803 | 6.4151 | |
96 | [anonymized] | 2021-01-25 00:31 | 1.0.0 | TAU22 lm pytorch-nn | 6.4696 | 6.4803 | 6.4201 | |
167 | [anonymized] | 2021-01-16 16:29 | 1.0.0 | lets try pytorch lm pytorch-nn | 6.9606 | 6.9616 | 6.9731 | |
88 | [anonymized] | 2021-01-13 02:38 | 1.0.0 | v10 lm temporal pytorch-nn | 6.3869 | 6.3945 | 6.3330 | |
93 | [anonymized] | 2021-01-13 02:33 | 1.0.0 | v9 | 6.4401 | 6.4464 | 6.3899 | |
91 | [anonymized] | 2021-01-13 02:28 | 1.0.0 | v8 | 6.3870 | 6.3946 | 6.3335 | |
92 | [anonymized] | 2021-01-13 02:17 | 1.0.0 | Merge remote-tracking branch 'origin/TAU-020' into TAU-020 | 6.4409 | 6.4468 | 6.3899 | |
89 | [anonymized] | 2021-01-13 01:51 | 1.0.0 | following_words;x_size=100;epochs=5;lr=0.001 lm pytorch-nn | 6.3749 | 6.3775 | 6.3331 | |
253 | [anonymized] | 2021-01-13 01:41 | 1.0.0 | following_words;x_size=100;epochs=5;lr=0.001 lm pytorch-nn | 6.3749 | 6.3775 | N/A | |
109 | [anonymized] | 2021-01-13 00:00 | 1.0.0 | v7 | 6.6176 | 6.6106 | 6.5937 | |
108 | [anonymized] | 2021-01-12 23:55 | 1.0.0 | v7 | 6.6056 | 6.6039 | 6.5885 | |
104 | [anonymized] | 2021-01-12 23:43 | 1.0.0 | v7 | 6.5773 | 6.5716 | 6.5581 | |
169 | [anonymized] | 2021-01-12 22:40 | 1.0.0 | TAU22 lm pytorch-nn | 6.9961 | 6.9974 | 7.0113 | |
119 | [anonymized] | 2021-01-12 22:26 | 1.0.0 | v5 | 6.7626 | 6.7311 | 6.7022 | |
149 | [anonymized] | 2021-01-12 17:48 | 1.0.0 | run.py update lm pytorch-nn | 6.9139 | 6.9013 | 6.9054 | |
148 | [anonymized] | 2021-01-12 17:44 | 1.0.0 | nn-gap-v1.0 | 6.9139 | 6.9013 | 6.9054 | |
105 | [anonymized] | 2021-01-12 17:36 | 1.0.0 | first solution 1 epoch 1000 texts best 15 lm pytorch-nn | 6.6239 | 6.6617 | 6.5711 | |
87 | [anonymized] | 2021-01-12 16:06 | 1.0.0 | v4 | 6.3869 | 6.3945 | 6.3330 | |
90 | [anonymized] | 2021-01-12 15:56 | 1.0.0 | v3 | 6.3870 | 6.3946 | 6.3335 | |
126 | [anonymized] | 2021-01-12 09:11 | 1.0.0 | v3 | 6.7637 | 6.7738 | 6.7407 | |
150 | [anonymized] | 2021-01-12 01:33 | 1.0.0 | v3 | 6.9303 | 6.9267 | 6.9063 | |
70 | [anonymized] | 2021-01-11 22:53 | 1.0.0 | Solution lm pytorch-nn | 6.1759 | 6.3140 | 6.1656 | |
214 | [anonymized] | 2021-01-11 01:00 | 1.0.0 | v2 | 7.3623 | 7.4396 | 7.3444 | |
143 | [anonymized] | 2021-01-11 00:40 | 1.0.0 | v1+years | 6.8733 | 6.8783 | 6.8607 | |
140 | [anonymized] | 2021-01-11 00:19 | 1.0.0 | v1 | 6.8453 | 6.8709 | 6.8412 | |
82 | [anonymized] | 2021-01-09 21:10 | 1.0.0 | 2 left, 2 right context lm pytorch-nn | N/A | 6.3009 | 6.2379 | |
61 | [anonymized] | 2021-01-08 18:34 | 1.0.0 | pytorch neural ngram model (3 previous words) lm pytorch-nn | 6.1274 | 6.1896 | 6.0819 | |
63 | [anonymized] | 2021-01-06 18:37 | 1.0.0 | pytorch neural ngram model (3 previous words) lm pytorch-nn | 6.1365 | 6.1994 | 6.0920 | |
64 | [anonymized] | 2021-01-06 16:31 | 1.0.0 | pytorch neural ngram model (3 previous words) lm pytorch-nn | 6.1448 | 6.1987 | 6.0943 | |
67 | [anonymized] | 2021-01-06 15:39 | 1.0.0 | pytorch neural ngram model (3 previous words) lm pytorch-nn | 6.1803 | 6.2305 | 6.1330 | |
68 | [anonymized] | 2021-01-06 15:06 | 1.0.0 | second try pytorch neural ngram model (3 previous words) lm pytorch-nn | 6.1962 | 6.2449 | 6.1592 | |
73 | [anonymized] | 2021-01-06 14:31 | 1.0.0 | first try pytorch neural ngram model (3 previous words) lm pytorch-nn | 6.2277 | 6.2578 | 6.1803 | |
252 | [anonymized] | 2020-12-16 09:09 | 1.0.0 | first try self-made lm | N/A | N/A | N/A | |
127 | [anonymized] | 2020-12-16 08:52 | 1.0.0 | poprawka tetragram self-made lm tetragram | 6.7562 | 6.7703 | 6.7517 | |
128 | [anonymized] | 2020-12-16 07:47 | 1.0.0 | tetragram self-made lm tetragram | 6.7562 | 6.7703 | 6.7611 | |
74 | [anonymized] | 2020-12-16 07:16 | 1.0.0 | python bigram self-made lm bigram | 6.1865 | 6.3105 | 6.1837 | |
223 | [anonymized] | 2020-12-15 22:14 | 1.0.0 | RandLM first ready-made randlm | 31.3001 | 33.2617 | 30.1634 | |
216 | [anonymized] | 2020-12-13 14:17 | 1.0.0 | solution self-made lm trigram | N/A | N/A | 7.5152 | |
251 | [anonymized] | 2020-12-13 14:05 | 1.0.0 | change a | N/A | N/A | N/A | |
250 | [anonymized] | 2020-12-13 13:41 | 1.0.0 | add test | N/A | N/A | N/A | |
224 | [anonymized] | 2020-12-09 21:19 | 1.0.0 | bigram | N/A | N/A | Infinity | |
249 | [anonymized] | 2020-12-09 09:51 | 1.0.0 | model-size=10k self-made lm interpolation | N/A | N/A | N/A | |
248 | [anonymized] | 2020-12-09 09:47 | 1.0.0 | model-size=10k self-made lm interpolation | N/A | N/A | N/A | |
247 | [anonymized] | 2020-12-09 09:45 | 1.0.0 | model-size=10k self-made lm interpolation | N/A | N/A | N/A | |
246 | [anonymized] | 2020-12-09 09:30 | 1.0.0 | model-size=10k self-made lm interpolation | N/A | N/A | N/A | |
97 | [anonymized] | 2020-12-08 16:27 | 1.0.0 | solution self-made lm bigram | 6.4696 | 6.4797 | 6.4201 |
Showing 1 to 50 of 253 entries