WMT2017 German-English machine translation challenge for news
Translate news articles from German into English. [ver. 1.0.0]
This is a long list of all submissions, if you want to see only the best, click leaderboard.
# | submitter | when | ver. | description | dev-0 BLEU | dev-1 BLEU | test-A BLEU | |
---|---|---|---|---|---|---|---|---|
6 | [anonymized] | 2021-02-17 19:16 | 1.0.0 | result fairseq m2m-100 just-inference | 0.33857 | 0.40306 | 0.35347 | |
5 | [anonymized] | 2021-02-12 19:54 | 1.0.0 | notebook fairseq m2m-100 just-inference | 0.33857 | 0.40306 | 0.35347 | |
4 | [anonymized] | 2021-02-12 19:53 | 1.0.0 | m2m-100 | 0.33857 | 0.40306 | 0.35347 | |
21 | [anonymized] | 2020-01-28 17:56 | 1.0.0 | translation with ready made fairseq transformer.wmt19.de-en v2 fairseq ready-made-model | 0.23399 | 0.27485 | 0.23698 | |
20 | [anonymized] | 2020-01-27 20:40 | 1.0.0 | translation with ready made fairseq transformer.wmt19.de-en fairseq ready-made-model | N/A | 0.27485 | 0.23698 | |
129 | [anonymized] | 2020-01-27 12:19 | 1.0.0 | CNN, sample_size = 5mln, epochs = 5 fairseq train | 0.07706 | 0.09276 | 0.07834 | |
1 | [anonymized] | 2020-01-15 09:58 | 1.0.0 | Poprawienie Tokenizacji istniejacego rozwiazania v3 ready-made fairseq | 0.39610 | 0.47024 | 0.41504 | |
2 | [anonymized] | 2020-01-15 09:29 | 1.0.0 | Poprawienie Tokenizacji istniejacego rozwiazania v2 ready-made fairseq | 0.39264 | 0.46386 | 0.40909 | |
162 | [anonymized] | 2020-01-15 09:15 | 1.0.0 | Poprawienie Tokenizacji istniejacego rozwiazania | N/A | N/A | N/A | |
3 | [anonymized] | 2020-01-14 20:53 | 1.0.0 | fix tokenization of output ready-made fairseq | 0.38549 | 0.45189 | 0.39879 | |
10 | [anonymized] | 2020-01-07 11:35 | 1.0.0 | ready-made Fairseq model fairseq ready-made-model | 0.24760 | 0.31147 | 0.26579 | |
9 | [anonymized] | 2019-12-30 09:59 | 1.0.0 | Runed a ready-made Fairseq model fairseq ready-made-model | 0.24760 | 0.31147 | 0.26579 | |
130 | [anonymized] | 2019-05-22 21:02 | 1.0.0 | marian 100k tg freq 10000 neural-network marian | 0.06805 | 0.07651 | 0.06824 | |
120 | [anonymized] | 2019-05-22 18:44 | 1.0.0 | marian 100k freq 10000 neural-network marian | 0.11676 | 0.13285 | 0.11359 | |
17 | [anonymized] | 2019-05-22 12:01 | 1.0.0 | marian 1M neural-network marian | 0.23935 | 0.27904 | 0.24561 | |
60 | [anonymized] | 2019-05-22 11:47 | 1.0.0 | marian 1M tg neural-network marian | 0.17381 | 0.20079 | 0.18072 | |
22 | [anonymized] | 2019-02-05 11:36 | 1.0.0 | type=s2s, corpseLen=1M, valid-freq 10000, early-stopping 5, workspace 2500, postproc sed deescapeSpecialChars detruecase awk sed neural-network | 0.23399 | 0.27282 | 0.23674 | |
23 | [anonymized] | 2019-01-22 17:17 | 1.0.0 | type=amun, corpseLen=1M, valid-freq 10000, early-stopping 5, workspace 2500, postproc sed deescapeSpecialChars detruecase awk sed neural-network | 0.23293 | 0.27193 | 0.23254 | |
27 | [anonymized] | 2019-01-12 12:57 | 1.0.0 | corpseLen=590k, valid-freq 10000, early-stopping 5, workspace 3000, postproc sed deescapeSpecialChars detruecase awk sed | 0.20598 | 0.24117 | 0.21002 | |
28 | [anonymized] | 2019-01-12 11:20 | 1.0.0 | corpseLen=590k, valid-freq 10000, early-stopping 5, postproc sed deescapeSpecialChars detruecase awk | 0.20547 | 0.24024 | 0.20857 | |
29 | [anonymized] | 2019-01-11 10:18 | 1.0.0 | corpseLen=590k, valid-freq 10000, early-stopping 5, postproc sed deescapeSpecialChars detruecase | 0.20547 | 0.24024 | 0.20857 | |
35 | [anonymized] | 2019-01-11 10:08 | 1.0.0 | corpseLen=590k, valid-freq 10000, early-stopping 5, postproc sed deescapeSpecialChars | 0.19604 | 0.23046 | 0.19946 | |
42 | [anonymized] | 2019-01-11 10:06 | 1.0.0 | corpseLen=590k, valid-freq 10000, early-stopping 5, postproc sed | 0.18594 | 0.22086 | 0.19142 | |
104 | [anonymized] | 2019-01-10 22:12 | 1.0.0 | corpseLen=590k, valid-freq 10000, early-stopping 5, no postproc | 0.16705 | 0.20042 | 0.17246 | |
118 | [anonymized] | 2019-01-03 22:12 | 1.0.0 | with awk simple postproc on out | 0.13057 | 0.15454 | 0.12454 | |
126 | [anonymized] | 2018-12-09 14:47 | 1.0.0 | Second dell commit | 0.09811 | 0.11533 | 0.09146 | |
11 | [anonymized] | 2018-02-15 00:38 | 1.0.0 | Tensorflow 80k iterations ; beam 4 alpha 0.9 ready-made neural-network | 0.25882 | 0.30561 | 0.26322 | |
12 | [anonymized] | 2018-02-15 00:05 | 1.0.0 | Tensorflow 80k iterations ; beam 3 alpha 0.6 ready-made neural-network | 0.25720 | 0.30334 | 0.26143 | |
13 | [anonymized] | 2018-02-14 23:18 | 1.0.0 | Tensorflow 86k iterations ; beam 3 alpha 0.6 ready-made neural-network | 0.25409 | 0.30126 | 0.25949 | |
18 | [anonymized] | 2018-02-14 11:47 | 1.0.0 | Tensorflow 50k iterations ; beam 20 alpha 0.6 ready-made neural-network | 0.23913 | 0.28295 | 0.24414 | |
40 | [anonymized] | 2018-02-07 11:10 | 1.0.0 | Add 5G data moses | 0.19762 | 0.22481 | 0.19183 | |
39 | [anonymized] | 2018-02-07 11:00 | 1.0.0 | Add 5G data | N/A | 0.22481 | 0.19183 | |
58 | [anonymized] | 2018-02-07 10:51 | 1.0.0 | improve solution -stack 155 moses | 0.18141 | 0.20750 | 0.18236 | |
57 | [anonymized] | 2018-02-07 10:47 | 1.0.0 | Improve sollution -stack 155 moses | 0.18141 | N/A | 0.18236 | |
133 | [anonymized] | 2018-02-04 23:59 | 1.0.0 | 'baseline' moses | 0.02757 | 0.02569 | 0.02823 | |
36 | [anonymized] | 2018-01-31 11:43 | 1.0.0 | corpus=590616, NB_OF_EPOCHS=8, MAX_WORDS=46000 neural-network | 0.18610 | 0.21637 | 0.19461 | |
56 | [anonymized] | 2018-01-24 11:05 | 1.0.0 | improve solution moses | 0.18141 | N/A | 0.18236 | |
113 | p/tlen | 2018-01-17 06:46 | 1.0.0 | NMT with Marian, vocabulary=70K, epochs=7 | 0.14849 | 0.17603 | 0.15308 | |
75 | [anonymized] | 2018-01-16 18:36 | 1.0.0 | --search-algorithm 1 -s 2000 --cube-pruning-pop-limit 2000 --cube-pruning-diversity 100-b 0.1 --minimum-bayes-risk moses | 0.17767 | 0.20160 | 0.17646 | |
110 | p/tlen | 2018-01-15 09:13 | 1.0.0 | NMT trained with Marian on 10%, 5 epochs, 40K dictionary neural-network | 0.15263 | 0.17750 | 0.15966 | |
135 | [anonymized] | 2018-01-14 16:45 | 1.0.0 | 'ibm self-made algo | N/A | N/A | 0.02608 | |
145 | [anonymized] | 2018-01-14 16:33 | 1.0.0 | ibm1 | N/A | N/A | 0.00762 | |
76 | [anonymized] | 2018-01-13 21:39 | 1.0.0 | Baseline 10%, stack 200 beam 0.1 moses | 0.17469 | 0.19716 | 0.17625 | |
105 | [anonymized] | 2018-01-13 21:22 | 1.0.0 | 0.17468 | 0.19761 | 0.17224 | ||
108 | [anonymized] | 2018-01-13 19:21 | 1.0.0 | 0.17009 | 0.19237 | 0.16779 | ||
132 | [anonymized] | 2018-01-13 19:12 | 1.0.0 | 0.06572 | 0.07063 | 0.06317 | ||
7 | p/tlen | 2018-01-09 18:10 | 1.0.0 | WMT16 neural model (decoded with Amun) + de-escape apostrophes neural-network | 0.27932 | 0.33703 | 0.28988 | |
8 | p/tlen | 2018-01-08 21:13 | 1.0.0 | neural model (decoded with Amun) neural-network | 0.27358 | 0.33058 | 0.28454 | |
77 | [anonymized] | 2018-01-08 18:13 | 1.0.0 | 0.17546 | 0.19893 | 0.17588 | ||
92 | [anonymized] | 2018-01-08 18:04 | 1.0.0 | 0.17546 | 0.19893 | 0.17369 |
Showing 1 to 50 of 162 entries